Statistical Techniques for Spatial Data Analysis
نویسنده
چکیده
We distinguish three prevalent spatial data types, defined by the topology of the entity to which the recorded information refers. These are point, lines and area. Features having a specific location, but without extent in any direction are considered as points. A pair of coordinates represents a point. Village locations, industrial locations, cities etc. are the examples of the point data. Lines features consist of series of x, y coordinate pairs with discrete beginning and ending points. Features like rivers, road networks, represents lines. Features defined by a set of linked lines enclosing an area are known as polygons. Polygons are characterized by area and perimeter. Administrative boundaries, land use, soil map etc. are the polygon features.
منابع مشابه
Determination of Optimal Sampling Design for Spatial Data Analysis
Extended Abstract. Inferences for spatial data are affected substantially by the spatial configuration of the network of sites where measurements are taken. Consider the following standard data-model framework for spatial data. Suppose a continuous, spatially-varying quantity, Z, is to be observed at a predetermined number, n, of points ....[ To Countinue Click here]
متن کاملMapping Spatial Variability of Soil Salinity Using Remote Sensing Data and Geostatistical Analysis: A Case of Shadegan, Khuzestan
Extended abstract 1- Introduction Soil salinity is one of the most important desertification parameters in many parts of the world. Thus, preparing soil salinity maps in macro scales is necessary. Water and soil salinity as one of the contributing parameters in desertification, cause soil and vegetation degradation. Soil salinization represents many negative effects on the earth systems such ...
متن کاملCase study Malaysia: Spatial water quality assessment of Juru, Kuantan and Johor River Basins using environmetric techniques
This study investigates spatial water quality assessment of selected river basins in the three different states in Malaysia. Environmetric techniques namely, cluster analysis (CA), principal component analysis (PCA), and discriminant analysis (DA), were applied to study the spatial variations of the most significant water quality variables in order to determine the origin of pollution sources ...
متن کاملInvestigation of Ground Waters Quality Using Multivariate Statistical Techniques (Case Study: Maragheh-Bonab Plain, East Azerbaijan Province)
Investigation and analysis of groundwater quality to monitor contamination and identify the most important pollutants and pollution points is one of the research fields. The objective of this research was to plan to improve groundwater quality on various spatial and temporal scales. Groundwater information of Maragheh-Bonab plain was collected from 26 wells in 10 years (2001-2011) with 454 samp...
متن کاملSensitivity Analysis of Spatial Sampling Designs for Optimal Prediction
In spatial statistic, the data analyzed which is correlated and this correlation is due to their locations in the studied region. Such correlation that is related to distance between observations is called spatial correlation. Usually in spatial data analysis, the prediction of the amount of uncertain quantity in arbitrary 4locations of the area is considered according to attained observations ...
متن کاملAnalysis of Spatial Imbalance Associated with Rural Settlements in Iran
Spatial distributions of rural settlements in Iran represent an imbalanced nature. The major objective of this study is to investigate the spatial patterns of Iranian rural settlements using certain indicators and indices .It further tries to propose a model regarding the analysis of spatial imbalances. This study further supported by application of modifiable areal unit problem(MAUP) suitable ...
متن کامل